Inference Based on Regression Estimator in Double Sampling
نویسندگان
چکیده
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.
منابع مشابه
Inference on Pr(X > Y ) Based on Record Values From the Power Hazard Rate Distribution
In this article, we consider the problem of estimating the stress-strength reliability $Pr (X > Y)$ based on upper record values when $X$ and $Y$ are two independent but not identically distributed random variables from the power hazard rate distribution with common scale parameter $k$. When the parameter $k$ is known, the maximum likelihood estimator (MLE), the approximate Bayes estimator and ...
متن کاملMinimum Φ-divergence Estimator and Hierarchical Testing in Loglinear Models
In this paper we consider inference based on very general divergence measures, under assumptions of multinomial sampling and loglinear models. We define the minimum φ-divergence estimator, which is seen to be a generalization of the maximum likelihood estimator. This estimator is then used in a φ-divergence goodness-of-fit statistic, which is the basis of two new statistics for solving the prob...
متن کاملLoglinear Models: An approach based on φ-Divergences
In this paper we present a review of some results about inference based on φ-divergence measures, under assumptions of multinomial sampling and loglinear models. The minimum φ-divergence estimator, which is seen to be a generalization of the maximum likelihood estimator is considered. This estimator is used in a φdivergence measure which is the basis of new statistics for solving three importan...
متن کاملMedian regression using inverse censoring weights
We implement semiparametric random censorship model aided inference for censored median regression models. This is based on the idea that, when the censoring is specified by a common distribution, a semiparametric survival function estimator acts as an improved weight in the so-called inverse censoring weighted estimating function. We show that the proposed method will always produce estimates ...
متن کاملBayesian penalized spline model-based inference for finite population proportion in unequal probability sampling.
We propose a Bayesian Penalized Spline Predictive (BPSP) estimator for a finite population proportion in an unequal probability sampling setting. This new method allows the probabilities of inclusion to be directly incorporated into the estimation of a population proportion, using a probit regression of the binary outcome on the penalized spline of the inclusion probabilities. The posterior pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010